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Abstract  Several questions are addressed regarding the role of number of surfaces in the Mroz
type multiple surface models. Firstly. increasing the number of surfaces improves the accuracy of
the plastic modulus function. but at the same time alters the translation behavior of surfaces. Two
90 out-of-phase axial-torsion loading experiments are chosen to illustrate the number of surface
influence on the model behavior. The stresses exceed the experimental levels with increasing numbers
of surfaces from 5 to 100. Secondly. for proportional loading. the multiple surface models do not
predict ratchetting (progressive plastic strain accumulation in one direction). However. these models
predict ratchetting tor general nonproportional loading. An “ellipse” shaped axial-torsional loading
path has been considered where predicted ratchetting rates far exceeded their experimental counter-
parts. An explanation is forwarded to address these properties of the models. 1t is further dem-
onstrated that the multiple surface model of Mroz and its modification by Garud produce identical
stress—strain predictions when the number of surfaces exceeds a certain value. For infinitesimal
loading increment. intersection of surfaces does not occur when using either the Mroz or Garud
model. however. when finite loading increment is selected in numerical calculations the intersection
problem arises in the Mroz model.

NOMENCLATURLE

/ yield surface tunction

I a surface in a multiple surface model

h plastic modulus tunction

k yield stress in simple shear

n unit exterior normal to the yield surface at the stress state

N number of loading cycles

N, number of surfaces emploved in « multiple surtiace model

P equivalent plastic strain

R, radius of the /th surface in the Mroz multiple surface tvpe hardening rules
S deviatoric stress tensor

2 total backstress tensor

2" center of the ith surface in deviatoric stress space tor the multiple surface models
A prefix denoting range

& plastic strain tensor

¢ total strain tensor

a stress tensor

v Mroz translation vector

Garud translation vector

-

I INTRODUCTION

The multiple surface models forwarded by Mroz (1967, 1969) and later by Garud (1981)
have gained wide appeal in the cyclic plasticity research over the last 20 years. An obvious
advantage of the multiple surface models 1s their ability to reproduce the Bauschinger effect
for Masing type materials. The Bauschinger etfect refers to the phenomenon that the yield
stress will be reduced in one direction if the material has been loaded plastically in the
opposite direction. The material is said to conform to Masing behavior when the cyclic
stress—strain curve. obtained by joining the tips of the hysteresis loops for different strain
amplitudes, reproduces the hysteresis loop shape corresponding to each strain amplitude.
The multiple surface models are also noteworthy for their capabilities for handling
additional hardening for nonproportional loading. 1t has been demonstrated that this class
of models can correlate experiments better than the lincar hardening model when predicting
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the stress responses for multiaxial strain-controlled loading (Hunsaker er /., 1976 ; Lamba
and Sidebottom, 1978). The superiority of the multiple surface models is also reflected in
the overwhelming efforts on developing the simplified two-surface models (e.g., Dafalias
and Popov, 1975; Krieg. 1975; McDowell. 1985: Tseng and Lee, 1983) and three-surface
models (Bruhns and Pape. 1989: Chaboche, 1989). Attempts have also been made to
advance the computational schemes associated with the Mroz multiple surface model (Chu,
1984 ; Kottgen and Seeger. 1993). The multiple surface models have been applied to
engineering problems (Barkey ez a/.. 1994 ; Chu, 1984 ; Garud, 1991 ; Howell et al., 1993)
and the encouraging simulations reported in the literature suggest that the multiple surface
models are able to provide stress—strain responses in close agreement with the experimental
observations for general nonproportional loading.

In spite of many advantages. there are certain concerns associated with the multiple
surface models. The discontinuous description of plastic modulus function may leave a
continuity condition unfulfilled (Hashiguchi, 1993). If the sizes of the surfaces are allowed
to vary. certain conditions should be satisfied to avoid intersection of surfaces. Therefore,
it is difficult to incorporate the transient material behavior such as isotropic hardening and
cyclic hardening into the multiple surface models (excluding the two and three surface
models). With the uniaxial stress—strain curve as the only input, the models do not have
sufficient flexibility to predict different levels of nonproportional hardening experimentally
confirmed for different materials. Furthermore, the multiple surface models do not predict
ratchetting, plastic strain accumulation in a given direction, for any proportional loading,
but they are able to predict ratchetting for general nonproportional loading (Garud, 1991;
Hassan et al.. 1992: Jiang. 1993). Hassan er al. (1992) and Jiang (1993) showed that the
predicted ratchetting rate obtained by using the Mroz model was much higher than the
experimental observations. It has not been fully understood why multiple surface models
produce ratchetting for nonproportional loading but zero ratchetting for proportional
loading. The present study addresses this concern.

Hashiguchi (1988) formulated the conditions for multiple surfaces to intersect for the
Mroz hardening rule and pointed out that surface intersection would occur. McDowell
(1989) discussed the intersection problem for the two-surface models and concluded that a
two-surface model following the Mroz translation direction posed no surface intersection
problem. The current work will further address this intersection issue for the multiple
surface models. It was noted that the number of surfaces employed in a multiple surface
model has an influence on the surface translation (Kottgen and Seeger, 1993). In this paper
the number of surfaces influenced will be elucidated to predict ratchetting for non-
proportional loading.

In the following discussions. the structure of the Mroz and Garud multiple surface
models will be introduced along with the basic framework of time-independent plasticity
theory. We will restrict the discussion to the conventional representation of plasticity
(Drucker, 1988), which assumes that no plastic deformation will occur in the elastic region
of yield surface. Distinction will be made between two or three-surface models and multiple-
surface models. In the remainder of the paper. emphasis will placed on the multiple-surface
models. Specifically. we will discuss the number of surface influence on the stress—strain
simulations and ratchetting prediction problems in general.

2. STRUCTURE OF MULTIPLE SURFACE PLASTICITY MODELS

Under the well-established framework of plasticity theories, for small deformations
the total strain is decomposed into the elastic and plastic parts. The elastic part is governed
by Hook’s law and the plastic part is the subject of plasticity theories. For plastic defor-
mation. the incompressibility condition is generally assumed. The material follows the
elastic stress-strain relation with zero plastic strains until the stresses satisfy the yield
condition. The von Mises yield function and the normality flow rule are used for the
purpose of discussions.
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Fig. 1. Generalized von Mises vield surface with kinematic translation i deviatoric stress space.
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A bold letter with a tilde below represents a second order Cartesian tensor. In eqn (1),
[frepresents a yield surface, S is the deviatoric stress tensor. x is the backstress in deviatoric
space representing the center of the yield surface. and A is the yield stress in simple shear.
In eqn (2). ¢ denotes the MacCauley bracket (i.e. <x> = 0.5 (x+|x|)) and 4 is a scalar
function often called the plastic modulus function. A colon between two tensors denotes
their inner product and the prefix d represents infinitesimal increment or differentiation. A
schematic representation of the yield surface and its translation is tllustrated in Fig. 1. The
angle between the back stress translation and the exterior normal is denoted by 6. The unit
exterior normal n on the yield surface at the loading point is defined as.

S—x
0o 3)

The shape of the vield surface is generally assumed unchanged ; however, the size of
the yield surface can be adapted to account for the transient behavior by allowing & to
vary. It 1s also assumed that the vield surface can translate but cannot rotate.

During elastic-plastic deformation the stress state lies on the yield surface. This con-
sistency condition can be expressed mathematically as

df = 0, (4a)

or modifying eqn (1).

dS:n—dyz:n—- 2di =00 (4b)

To model the observed stress-strain response of a material under cyclic loading, Mroz
(1967, 1969) introduced the concept of a field of plastic moduli. Several points are selected
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Fig. 2. Field of constant plastic modulus functions.

on the uniaxial stress-strain curve (refer 1o Fig. 2). and corresponding to each point, a
surface in the stress space 1s defined to be geometrically similar to the initial yield surface.
Mroz postulated that these surfaces define regions in the stress space. each having a constant
plastic modulus function. A(1). (2). iti). H(N,) where N, is the number of the outermost
surface. Independently. [wan (1967) proposed a similar multiple surface model to consider
the Bauschinger effect for Masing type materials.

Mroz (1967) proposed that the translation direction of a surface is given by the vector
joining the present state of stress P on the ith surface with the image stress state P* on the
(7+ 1)th surface such that the two surfaces have an identical exterior normal n (see Fig. 3).
This Mroz translation vector can be expressed as

=R - R =g (5

where 2 and R, represent the center and radius of the ith surface, respectively. The

Fig. 3. Schematic of the Mros hardening rule itlustrating translation direction.
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Fig. 4. Schematic of the Garud hardening rule illustrating translation direction.

increment of the ith surface center is determined by manipulating eqn (5) and the consistency
condition, eqn (4). The first surface f,,, is the yield surface and any other surface represents
constant plastic modulus functions.

Garud (1981), in examining hardening rules, pointed out that the translation direction
of the yield surface, according to both the Mroz and Prager-Ziegler (Prager, 1955 ; Ziegler,
1959) rules, was independent of the stress increment, and this independence would create
an inconsistency problem in the finite stress increment calculation. To avoid this possible
inconsistency, Garud proposed a new hardening rule that related the surface translation
direction to the stress increment direction. Referring to Fig. 4, consider that the stress
increment was so large that it joined the current stress state point P on the ith surface and
P’ on the (i+ 1)th surface, so that the two surfaces would be tangential on point P” where
the ith surface had its center on O;. Garud proposed that the translation direction of the
ith surface is in the direction of the vector joining O, and O/, and the magnitude of
translation is determined by a consistency condition which requires that a stress state stay
on the yield surface. Therefore, the Garud translation vector, the vector joining point O;
and O}, can be expressed as

vV=(R— R(r))gl+z(r' n ™ L (6)

where 0’ is the unit exterior normal at point P’ which is often called the incremented stress
state. Other than the prime notation, both sets of equations for the Mroz and Garud
translation directions are similar. Clearly the only difference between the Garud rule and
the Mroz rule is that the translation direction in the Mroz rule is determined by the normal
n of the current stress state, while in the Garud rule the translation direction is determined
by the normal n’ of the incremented stress state. The magnitude of translation of a surface
for the Mroz model is determined by

For the Garud model, y is replaced by y” in the previous expression. The magnitudes and
directions of translations for the two models are different.



1058 Yanyao Jiang and Huseyin Sehitoglu

Primarily aimed at reducing the computational time, the two-surface plasticity models,
consisting of a yield surface and a bounding surface, were developed based on the concept
that the translation direction of the yield surface is determined by the relative positions of
the two surfaces. The translation of the yield surface follows either the Mroz hardening
rule (Dafalias, 1981 ; Dafalias and Popov. 1975; Krieg, 1975) or Garud hardening rule
(Tseng and Lee, 1983).

It should be noted that the two-surface models differ from the multiple surface models
of Mroz and Garud in the way they specify the plastic modulus functions. For proportional
loading. the Mroz-Garud models predict fully closed stress—strain hysteresis loops, hence
no ratchetting; while the two-surface models with a nonlinear hardening relationship
can produce ratchetting for both proportional and nonproportional loadings (McDowell,
1992). Mroz (1981. 1983) discussed the similarity between the multiple surface models and
the Armstrong-Frederick type single surface models. Ohno and Wang (1991) further
formalized the relationship between the multiple surface models and the single surface
formulations.

Preliminary analysis (Jiang. 1993) suggests that the Mroz and Garud multiple surface
models are inferior to the Armstrong-Frederick (Armstrong and Frederick, 1966) type
models such as those of Chaboche ¢f a/. (1979) and Ohno and Wang (1993) not only in the
ratchetting prediction but also in the stress response predictions for nonproportional strain-
controlled loading. Therefore, we draw a distinction between the multiple surface models
of Mroz and Garud and the single and the two-surface models. We will concentrate our
discussion to the multiple surface models.

3 INTERSECTION OF SURFACES

In discussing Mroz—-Garud multiple surface relations. it has been always taken for
granted that (i) the surfaces remain tangential on the point of stress state and (ii) in the
course of translation the surfaces will never intersect. In fact, when the point of stress state
Is always the point of tangency of the surfaces, there will be no possibility for the surfaces
to intersect. Here, we demonstrate that this is true for an infinitesimal loading increment.
Figure 5 depicts a critical position before possible interaction could occur. Without loss of
generality, discussion will be restricted to two neighboring surfaces, f,;, and f;;. |,. Assume
that at the current moment the two surfaces are tangential at point 7 and the stress state is
at point P on the ith surface. The exterior normal at point P is n. The image point in the

Fig. 5. lustration of possible intersection of surfaces for the Mroz hardening relation.
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(7 + Dth surface which has an identical exterior normal n is P*. According to the Mroz
hardening relation. the translation of ith surface should follow the vector joining point P
and point P*.i.e. v. Simplifving the Mroz translation vector represented by eqn (5) for the
Fig. S situation results in

= (R, Rop+z " w2 — (R

< iy

=

7Rm)(r,_lvr.]7‘)~ (7)

where n,1s the unit exterior normal at point 7 where the 7th surface touches the (i+ 1)th
surface. R, and R, ., denote the radii of the ith and (7~ 1)th surfaces, respectively. Because
(R,_,,—R.,) > 0and noting that both n and n, are unit vectors. from eqn (7) we have

von, = (R - R o, 1y < O (8)

The equal sign m the previous inequality holds only when the loading state point P
coincides with point 7. In this case the two surfaces. /. and £, .. will translate in a direction
determined by the relative position of (74 2)th surtace m terms of f,,_ |, or f,,, which is not
the case under consideration. Noting that the direction ot dz'" 1s parallel to y, the inequality
implies that whenever the stress point is at a point other than point 7 the translation
direction of the ith surface alwavs makes an obtuse angle to the exterior normal nat point
T where the ith and (/1 + 1)th surfaces were tangential. Theretore, the /th surface will depart
from the initially tangental point 7 as a result of further loading. This condition suggests
that when two surtaces are tangenual at a point other than the stress point, further loading
will force those two surtuce 1o separate. When the loading point P reaches the (74 1)th
surface. the two surface will be tangential at a point und. according to the aforementioned
condition. this point should be the foading point 2. This confirms the previous assertion
that the surfaces will be tangential on the point of stress state and the surfaces will never
intersect. Upon replacing o in egn (8) with n'. the exterior unit normal at the incremented
stress state. we can reach the same conclusions for the Garud model.

From the previous discussions on the Mroz model. we conclude that when the loading
path follows PP i Fig. 3. the /th surtace will be tangent to the 7+ 1)th surface at point
P’. On the other hand in Fig. 4 for the Garud rule. the rth and (7 + 1)th surfaces will be also
tangential at point P on the (7 + Ljth surface when the loading point P reaches P’. Clearly,
the resulting translation ol the /th surface will be the same according 1o both the Mroz and
Garud rules when the number of surfaces is mcreased. This will be demonstrated and
further discussed.

The previous discussion ol the mtersection problem assumes that the stress increment
1s infinitesimal. Note that the term imfinitesimal here is a mathematical terminology. Because
the translation direction of a surface is independent of the stress increment, surface inter-
section may occur for the Mroz model when the stress increment is finite. A simple example
1s tllustrated in Fig. 6. When the current stress point # lies in the extended line linking O,
and O, .. the current centers of the /th and (7+ 1ith surfaces. respectively, the translation
of the ith surface should be consistent with the exterior normal direction on the 7th surface
at point P. A finite stress increment AS perpendicular to the normal direction, n, in
deviatoric stress space from P o 2 will result in mntersection of the two surfaces. However,
such intersection problem does not exist for the Garud model. even for finite stress
merement. Referring to Fig. 4. the Garud rule requires that the two surfaces, f;, and £, )
be tangential at the point £ when the loading stress state reaches the (/4 1)th surface. We
established that there is no mtersection problem for infinitesimal stress increment. There-
fore. the surface mtersection problem can be circumvented in the numerical analysis when
using the Mroz model by systematically refining the louding increment step. In the numerical
analvsis where finite loading increment is utilized, measures such as those described by
Tipton (1985) should be also taken for the case when a loading step crosses a surface.

We note that the current conclusion on the surface intersection contrasts to that of
Hashiguchi (1988) who concluded that the surfaces may intersect for the Mroz model.
MceDowell (1989) also pomnted out that a two-surfuce model obeying the Garud translation
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Fig. 6. Intersection of surfaces when emploving the Mroz model for finite stress increment.

direction had a region where the boundary surface and the yield surface would intersect,
but there was no intersection problem if the vield surface follows the Mroz translation
direction. In some of the two-surface models. the bounding surface is allowed to translate
independently (McDowell. 1989). even it is not “touched™ by the yield surface. This inde-
pendence of translation of the bounding surface may result in surface intersection. This
difference contributed to miscellaneous conclusions concerning the intersection problem in
the literature.

4 NUMBER OF SURFACE INFLUENCE ON STRESS-STRAIN PREDICTIONS

The plastic modulus function 1s described with the piecewise linear representation in
the multiple surtace models. Inevitubly. the number of surfaces employed in the model has
an influence on the description of the stress strain relations for a proportional loading. For
uniaxial loading the piecewise lineur description in the multiple surface models will approach
the experimental stress--strain curve as increasing number of surfaces are employed. On the
other hand. the translation direction of a surface is dependent on the relative positions of
the consecutive surfaces. Therefore. it becomes evident that the number of surfaces
employed also has an influence on the surface translations. For discussion, we consider
only the cvelically stable material. When the yield stress is a constant, eqn (4b) renders

dS:n=dz:n 9

Substituting the above relation into eyn (2). we obtain

] |
dg" = ](dg:g)g = |dg| cos fin, (10)

/

where ¢ 1s the angle made by the exterior normal direction n and the translation direction
of the yield surtace (refer to Fig. 1) in deviatoric stress space. The quantity |dg| in eqn (10)
15 the magnitude of the backstress increment which is defined as |[dg| = ,/dg: dg. With the
other conditions being the same tor a stress-controlled loading path, eqn (10) implies that
the larger the angle 0 the smaller the corresponding plastic deformation predicted. If the
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Fig. 7. Mustration ot the number of surtace mfluence on the translation of a surtace.

strains are controlled parameters. cgn (10) suggests that a larger angle 6 will result in a
larger stress response. In the case of stress-controlled loading (where stress increments are
known beforehand and plastic strains are to be computed) consider two cases with the
same number of selected surfaces and plastic modulus functions. The one with a larger
angle 6 will result in smaller plastic deformation. Importantly. the angle 6 can be viewed as
a measure of nonproportionality etfects (Benallal and Marquis. 1987). We find that the
number of surfaces not only influences /. as noted hy other investigators. but influences ¢
considerably. The relationship between ratchetting and ¢ was discussed by Jiang and
Sehitoglu in a recent paper (Jiang and Sehitoglu. 1994).

Figure 7 schematically illustrates the number of surface influence on the translation
direction of a surface when using the Mroz multiple surface model. Considering the case
when the 1-ith surfaces are tangential at the loading point P and the next neighboring
surface 18 /,;, ;. the translation direction of the ith surface will follow the direction y and
the corresponding angle between the normal n and the translation direction y is 6. If the
number of surfaces is reduced so that the next neighboring surface size should become
larger, the translation direction of the ith surtace would follow v~ direction that makes an
angle §" with n. Accordingly. for the same stress loading path. the predicted results will be
different if employing a different number of surtfaces. The number of surface influence on
the Garud translation direction can be explained in the same fashion.

4.1. Nonproportional loading cxpeviments under strain control

Two strain-controlled 90 out-of-phase axial-torsion loading paths are investigated.
The experimental data is obtamed from Fatemi (1985) who conducted his experiments on
the same equipment as the authors at the University of Ilinois. Two loading paths are
shown in Fig. 8. The uniaxial stress strain curves used in the simulations are shown in Fig.
9 for different number of surfaces selected. The yield stress is 173 MPa. The largest surface
corresponds to a uniaxial stress of 700 MPa. The surfaces in between the yield surface and
the largest surface are evenly spaced. Figure 9 shows that the number of surfaces employed
has Iittle effect on the uniaxial stress strain relation when the number of surfaces is larger
than five. The effect of the number of surtace influence under proportional loading i1s small
and converges asymptotically.

Figure 10(a) shows results predicted by the Mroz model for path 1. Little influence of
the number of surtaces s noted. However. the number of surfaces has a profound effect on
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the predictions of the stress response for path Il (Fig. 10b) when using the Mroz model.
When the number of surface 1s five. the predicted stress response is in close agreement with
the experimental data. When the number of surtaces is increased, higher stress responses
are predicted. Similar phenomenon can be observed for the Garud model. For path I, the
Garud model is insensitive to the selection of the number of surface. However, the number
of surface influence becomes significant for path I when using the Garud model (Fig. 11).
Of all the selections of the number of surtaces. the Garud model does not give results in
good agreement with the experiment. [t is noted that when N, is larger than 50, the two
models predict very similar results for the two loading paths investigated.

To illustrate this point further we consider 1070 steel (Fig. 12a) subjected to a strain-
controlled 90 out-of-phase tension torsion experiment (Fig. 12b) to demonstrate this
effect. Assume that the material obeyvs a bilinear stress-strain relation for uniaxial loading
(Fig. 12a). The purpose of this choice 1s to isolate the number of surface effect on the
translation of the surfaces. For this material. the material constants for the multiple surface
models include the Young's modulus. E. the yiceld stress. a,. the plastic modulus, #, and
the Poisson’s ratio, y. These material properties are presented in Fig. 12a. It should be
noted that the selection of the material constants does not qualitatively alter the ensuing
points of discussion.

The predictions obtained using the Mroz and Garud models with different number of
surfaces are shown in Fig. 12b. The experimental strain path is depicted in the upper-right
corner of Fig. 12b. N, in the figure denotes the number of surfaces employed when using
the Mroz or Garud model. There are 4000 incremental steps used for a loading cycle in the
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Fig. 12, Demonstration of the number of surface influence on the Mroz and Garud predictions : (a)

bilinear stress strain representation and material constants used in the Mroz and Garud simulations ;

by stress responses predicted by the Mros and Garud models for a strain-controlled nonproportional
tenston torsion loading path.

simulations. The largest surface in the multiple surfuce models corresponds to about 10%
strain amplitude for the uniaxial loading and the surfaces in between the largest surface
and the smallest (vield) surface are uniformly distributed in deviatoric stress space. From
Fig. 12b we recognize the signiticant influence of the number of surfaces on the stress
response predictions. For the 90 out-of-phase loading path, the Mroz and Garud models
predict higher stresses as the number of surface increases.

We note that with bilinear stress strain representation for uniaxial loading, all the
values of the plastic modulus functions represented by each surface in the models are
identical. In other words, there is no influence of the number of surface on the plastic
modulus function. Therefore. all the deviation shown in Fig. 12b is attributed to the
alteration of translation direction of the vield surface due to employing different number
of surfaces. Also. we observe that both multiple surface models predict practically the same
results when N = 30. This is consistent with the previous discussion of the Mroz and Garud
models. From the numerical analyses employing the multiple surface models, it has been
noted that the seriousness of the number of surface influence is also dependent on the
loading magnitude and loading path (hiang. 1993).

For general applications of the multiple surface models, the number of surfaces cannot
be very large due to the limitation of the computational ability. The tremendous influence
of the number of surfaces. as shown in Figs 9 2, reveals an important controversy of the
multiple surface models. A hardening rule is identified by its unique specification of the
translation direction for the vield surface. In the multiple surface models, however, the
number ot surfaces emploved becomes an important model parameter for this specification.
The quantitative relation between the number of surfaces and the predicted results is
difficult to formulate. Many existing conclusions related to the multiple surface models
should be reviewed in the context of the number of surfaces employed.
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5. RATCHETTING PREDICTIONS WITH ML LTIPLE SURFACE MODELS

5.1. Nonproportional loading experiments under stress control

The uniaxial representation of 1070 steel with multiple surtaces is depicted in Fig. 13.
Similar to the 1045 steel. the amount of surface influence diminishes when N, exceeds five.
A comparison of experimental ratchetting results and predictions by the Mroz and Garud
models for a nonproportional axial-torsion loading path is presented in Fig. 14. The stress-
controlled “‘ellipse” shaped axial-torsion loading path was conducted on a 1070 steel
tubular specimen (Jiang. 1993). With tensile axial mean stress. there is progressive strain
extension in the axial direction. The experimental ratchetting in the shear direction for this
loading path is minimal. The material displavs long term ratchetting rate decay. In the
simulations, 4000 incremental steps are emploved for each loading cycle and the number
of surfaces used in the models 1s 100. The matenal constants for the models are not
important for the points of discussion but can be found elsewhere (Jiang, 1993). From Fig.
14 we find that the two multiple surface models arc able to produce constant ratchetting
rate for the “ellipse™ shaped loading path in both axial and shear directions, but predicted
results are very different from the experimental observations. The ratchetting rate predicted
by the Mroz and Garud models for the nonproportional loading is constant and exhibits
no decay. More notably. the models predict large shear ratchetting while the experiment
displays practically no ratchetting in this direction. The two models predict virtually ident-
ical results.
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(a)

Fig. 15 Surtace transiation for proportional and nonproportional loading according to the Mroz
model : (a) surface translation for proporuonal loading @ (b) surtace translation for nonproportional
loading.

5.2, Explanation of raichetting under the nonproportional loading case

The finding that a multiple surface model does not predict ratchetting for proportional
loading but predicts ratchetting for nonproportional loading can be explained as follows.
Rewriting the flow rule. eqn (2). in the indicial form leads to

I
doo= odSonon,,,. (b
h

Ratchetting rate is the amount of stram progression during a loading cvcle. Presenting
this expression mathematically. we have.

de, . ' ! |
= di, = SdS o on,,,. 12
av Tl 1o, i ASufon,., (12)

O

where dé;,, dV s the ratchetung rate in the mn direction.
Referring to Fig. 15a. a proporuonal loading path is represented by A0, ,80,,.,,4.
Assume that for this loading path the first | ith surface translates while the other surfaces
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larger than 7 will not move. Because of proportional loading, the plastic modulus function.
/1. and the value of the inner product dS,n,, will vary symmetrically with respect to the
{i+ Dth surface center. O., ... and are always non-negative. The value of a normal com-
ponent iz, will vary symmetrically with respect to the fixed point. O,,. ,,, but the sign of the
normal component z, will change. As a result. the integral in right-hand side of eqn (12) 1s
always zero. henee no ratchetting is predicted in any direction.

We present Fig. 15b 1o study the nonproportional loading behavior. The loading path,
ACBCA. consists of @ static stress in the 11 direction and fully reversed stress components
in the other direction. The ratchetting rate in the 11 direction can be expressed as

de i 1
d l\ = dS o (13)

¢ ICBC 1/’

Again. i and dS; n, are non-negative and are symmetric with respect to the middle
point ¢ between 4 and B. For this loading path. the variation of the normal component
nyy s symmetric with respect to the same middle point C but does not change its sign for a
loading cvele. Asa result. the integrat of egn (13) is a non-zero value. Considering cyclically
stable material properties. the variations of 4 and dS, . and n,, do not depend on the
number of cveles, Therefore. a constant ratchetting rate is predicted. This explains the
constant ratlchetting predicted by the Mroz and Garud multiple surface models for the
nonproportional loading reported by Garud (1991) and Hassan er /. (1992). Garud (1991)
demonstrated the ability of his model to predict ratchetting for a nonproportional loading
path of steady miernal pressure with superimposed cvclic torsion. Hassan et al. (1992) used
the Mroz model to simulate a loading consisting of static internal pressure and axial strain-
svmmetric cyehng.

6. CONCLUSIONS

(1) The number of surtaces in the multiple surface models of Mroz and Garud has a
significant influence on the translation direction of the yield surface and. hence the stress
strain predictions, This number ot surface emploved can in fact be viewed as a controlling
parameter or model coeflicient. but a quantitative relationship between this parameter and
the predicted results is vet to be formulated.

(2) When the loading increment is infinitesimal. no intersection of surfaces will occur
for the Mroz and Garud muluple surface models. Intersection of surfaces may occur when
using the Mroz model tor finite loading increment but will not occur when using the Garud
model.

(3) For general nonproportional loading, the multiple surface models can predict
ratchetuing. However. the predicted ratchetting rates generally differ from the experimental
observations.
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